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A UNIVERSAL ALGORITHM FOR THE SOLUTION OF PROBLEMS INVOLVING 

THE MATHEMATICAL MODELING OF THE THERMAL REGIME 

IN A STRUCTURE, IN ONE-DIMENSIONAL APPROXIMATION 

V. S. Khokhulin UDC 536.24.02 

We examine a universal solution algorithm for problems related to the mathemati- 
cal modeling of the heat regime in structures in one-dimensional approximation, 
synthesizing the possibilities and advantages of the solution algorithms of 
these problems, as determined from graphs of general form and a graph in the 
form of a tree. 

The method of mathematical modeling of the thermal regime in structures in one-dimensional 
approximation [1-3] has recently found widespread application with regard to problems of ther- 
mal designs in various heat-engineering systems and devices. The thermal model of a structure 
in this case is represented in the form of a graph, on N of whose arms are given the equations 
of heat conduction modeling the thermal state in distributed structural elements, with the 
heat-balance equation for concentrated elements in combination with conditions of thermal 
stress given at the N V apices (at Nein internal apices of the graph) or by the boundary con- 

ditions (at N~b boundary apices). We will identify the boundary apices of the graph as those 

apices with which only a single arm is associated. The inside apices will include all those 
with which a minimum of two arms are connected. 

As a rule, the system of nonsteady nonuniform one-dimensi0nal heat-conduction equations 
with which we are dealing here, as a result of the finite-difference approximation of the 
differential operators, reduces to a system of algebraic equations, determfned on the graph 
of the thermal model for the solution of which various modifications of the parametric sweep- 
ing method [2] is used, or where use is made of a generalized algorithm [3], utilizing a cyc- 
lical sweeping method. These methods exhibit excellent convergence and stability and are 
suitable for thermal models whose graphs are arbitrary in form (see Fig. la), i.e., it con- 
tains cycles, loops, etc. The application of these methods requires a considerable number 
of arithmetic operations and, consequently, considerable computer capacity. 

The original graph can frequently be represented as some combination (total) of simpler 
interconnected graphs. This makes it possible to break down the graph in the following man- 
ner. Let us assume that N b boundary graphs are contained within the original graph; these 
boundary graphs simulate the characteristics of a tree (or bush), and there is also a root 
graph of general form (i.e., with loops and cycles) to link all of the separate graphs into 
a graph representing the thermal model of the structure. In this case, the root apices of 
the boundary graphs are the inside apices of the root graph. If we were to include the sim- 
plest tree-shaped graphs consisting of a single arm and two terminal apices in the number 
of boundary graphs, all of the apices of the root graph would be inside graphs in terms of 
the earlier-introduced definition. 

The ~ apices of the graph under consideration have been determined on the set V = 

=Vr~-~Vp. The total number of N V apices in the original graph consists of the Ner apices 
p=I 
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Fig. i. Orientational graph of a thermal model and its decom- 
position: a) graph of the thermal model; b) boundary graphs 
of the model) c) root graph of the model. 

Nb Nb 

of the root graph and : (No v -- I) apices of the boundary graphs, i.e., Nv=N~r~-:(Nap--I). 

p = l  Nb D==! 

The arms of the graph form a three-dimensional region D : Drq-E Dr' the number N arms of 

the graph is composed of the number of arms N r of the root graph and the number of arms 

A' b N b 

~" N,, of the boundary graphs (N = N ~ + ~  Np). 
! ~ :  I p ~  1 

Let us assume that the structure, orientation, and the numbering of the apices and arms 
of the root graph is arbitrary. Each pair of apices a and B of the root graph can be com- 
bined with several arms E~Bk = (x~, x~)k, k = I, 2 ..... Ma~ = (const)~B (in which case 
M~3 = MBa). Moreover, the root graph may contain loops Ea~ m = (x~, x~)k, k = i, 2 ..... 
M~a (const)~a. Let us establish the apex a�9 V r and let us examine the ~ apices such that 
the arms Ea8 (emanating from the apex a) and Esa (incident at apex+a) belong to V r. We will 
assume that ~�9 Ga- (or B �9 Ga+), if Eas�9 V r (or E~a�9 Vr), Ga = Ga + Ga-. Correspondingly, 
the number of arms in the initial number of apices under consideration is determined by the 
relationship Na = Na + + Na-. 

For the sake of convenience in organizing the calculation process, let us introduce the 
following construction and numbering system for the apices and arms of the boundary graphs 
in terms of levels, which are determined in the following way. We will assume the root apex 
of the boundary graph to be the zero level. The arm (or arms, if the graph under considera- 
tion is in the form of a bush), which is connected to the root apex, will be referred to as 
the arm (arms) of the first level. If the number of arms is greater than unity, we then pro- 
pose to number them from left to right. We will treat the first-level apices as the initial 
apices of the first-level arms (see the orientation of the arms in Fig. ib). The construc- 
tion of the apices and the numbering of the arms for the subsequent levels are carried out 
in the same way. When the graph is oriented in the manner shown in Fig. ib, the root apex 
of the boundary graph is the terminal. 
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In accordance with the structure of the boundary graph, the set of its apices Vp = 

=XV~ �9 Here it is assumed that the root apex pertains to the zero level, i.e., V0P = I. 
?=0 

Taking into consideration that the apices of the boundary graph may be both inside and boun- 
dary, we will assume that the set VyP at each level consists of the sum of the sets of the 

inside apices Vyin p and the boundary apices V~bP, i.e., VyP = V~in p + VybP , VYE{I, N$}. 

Keeping in mind the above assumptions and definitions, let us examine the mathematical 
model of the thermal regime of a structure in one-dimensional approximation: 

V I E { I ,  2 . . . . .  Nr} A V / ~ { 1  , 2 . . . .  , N~}, p =  1, Nb: 

p(xj, T)Cp(xl, T) OT_._~_=__.O_Ot Oxi (~(xj, T) S(xi)--~x~ 1 +qv(Xl, T, /); (1)  

T (xl, t)l,=o = To (xi); (2) 

where 

p =  1, Nb: 
. +  

dT(x=) at -- j" T) S -~xj V~p~ (T) Cpr (T) "Z = X (x j, (x~) + 
1=1 x .FLI  

~q- 

+ i~__, ~'(x~' T)S(xj) O~T--~'-Ioxi ,,,=o + Ova, (T, t )+ 

O+ N~z 

+ ( l  - -  y = ,  p) t=,--'~ - -  ~- (xt, T) S (&) "-7--- ,=t-'f 

= [1,  i f  yEVr\(Vr13Vp), p=- l, Nb; %,p 
t o, ~f v~v , :nv~ ,  p:= 1, Nb; 

V(xCVv\(VrflVp), P =  1, Nb: 

/= 1 OXl xj =L 1 
+ 

(3)  

(4) 

OT I + Qv~ (T, /); + ;~ (x., T) S (x.O ~ ~i =~176 
(5)  

v a E V  T(x~)b=o=To(x=)- (6)  

Let us now turn to the construction of a solution algorithm for the problem under con- 
sideration. As a result of the finite-difference approximation of (1)-(6) on a six-point 
two-layer pattern based on an implicit scheme, we will obtain 

V/E{1,  2 . . . .  , N,:}: 

Tj,o (E~) - -  ~' (x~,); I 
v i = l, Ni--I: ] 

! 

I + Bj.t(E~t~) " k k Ti. ~+~ (E~) = - -  F~.l (E~); 

E h 

Vc~EV r A p E { I ,  2 . . . . .  NQ: 

(7) 
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N + M3r ~ 

- -  = (E[~rz) S],N j (Ergo:) X 
['ft ,--,a , ./=1 k=l 

E h 

N~- M~8 

+ B:,o (E~) 7~j,a (E~I3) + Fj,o (s + Ov~ + 

l 

h, 

l=1  
Cl, N~ ~'~ (X~) .J[- FI ' N~ ); 

W G { 1, 2 . . . .  , Np}, p = li"Nb: 

V i =  1, N T - - l :  

7"j,,vf--=- 7"~; 

v ~ v p \ ( G  flv,:), p = ], Nb: 

i= l  

+ ~,j,oSj,o (-- Ci,oT~ + Bj.oTi,1 + Fs,o) + (~v~; 

V(z~o=0, p =  1, Nb: 

7 (A .,qt. . + Fi = 
/=1 

( 8 )  

( 9 )  

(IO) 

(11) 

where ~p is the function modeling the thermal effect of the root graph on the p-th boundary 
graph at the point of their conjugacy [see (3), (8)]. 

Let us assume that for each p-th boundary graph the solution of system (9)-(11) can be 
presented in the form of ordinary sweeping: 

where 

i----1, N7--1 , 

Bj.~ 

(12) 

aJ,i+l = Cj,i-- o*3,iAj.i (13) 

Aj.,Bj.i + Fj., 
~J,i+l = - ( 14 ) 

CL i -- %,iAJ, 

The boundary values of the sweeping coefficients at each boundary arm belonging to the 
upper level of the graph under consideration is defined, jointly considering (I0) and (12), 
for i = 0. As a result, we obtain: 

O~j, 1 M~ (15) 
L= 
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where 

~J.1 -- N= 
L :  ' ( 1 6 )  

(17)  

(18) M= = ~.0Sj.0B~.0; 

V~p~,Cp, T ,  q- ~j.oSj.oF~. o q- Ov=. (19) N= 

Knowing t h e  b o u n d a r y  v a l u e s  o f  t h e  s w e e p i n g  c o e f f i c i e n t s ,  u s i n g  (13)  and ( 1 4 ) ,  we f i n d  
t h e  v a l u e  o f  t h e  s weep i ng  c o e f f i c i e n t s  a j , i ,  8 j , i  v i  = l ,  Nj - 1. As a r e s u l t ,  we e l i m i n a t e  
a l l  b o u n d a r y  a p i c e s  o f  t h e  u p p e r  l e v e l  and t u r n  t o  an e x a m i n a t i o n  o f  t h e  a p i c e s  in  t h e  f o l l o w -  
ing  Ny - 1 l e v e l .  At e a c h  y - t h  i n t e r v e n i n g  l e v e l  o f  t h e  bounda ry  g r a p h  we h a v e  b o t h  t h e  boun-  

day  a p i c e s  ~ VybP , so  t h a t  a t  l e a s t  one i n s i d e  apex  a ~  V7i n.  The p r i n c i p l e  o f  e l i m i n a t i n g  

t h e  b o u n d a r y  a p i c e s  a t  t h e  i n t e r v e n i n g  l e v e l  i s  a n a l o g o u s  t o  t h e  p r o c e s s  o f  e l i m i n a t i n g  t h e  
b o u n d a r y  a p i c e s  a t  t h e  u p p e r  l e v e l  o f  t h e  g r a p h  u n d e r  c o n s i d e r a t i o n  t h a t  we have  j u s t  con -  
s i d e r e d .  I n  e l i m i n a t i n g  t h e  i n s i d e  a p i c e s  we examine  j o i n t l y  (10) and (12)  f o r  i = Nj ,  where  

j ~ Na ~+, and f o r  i = 0, where  j ~ NAP-. The b o u n d a r y  v a l u e s  o f  t h e  sweep ing  c o e f f i c i e n t s  
a r e  t h e n  c a l c u l a t e d  in  t h e  f o l l o w i n g  manner :  

M~ 
~ " =  L~ ' (20) 

where 

N~ 
~J" --  L~ ' ( 2 1 )  

~,~+ 
- -  ~ "~j. Nfii. N~ (At. Nj=j, Nj --  G,  N j) + Ks,oSj,oC~, 0; 

i = l  
( 2 2 )  

M'~ = k~,oSi,oBj.o; (23)  

N+ 
N'= = ~ V . ~ .  Gor.+ ~ ~ ,qS~,,~(Aj N#j ~ + r~,~) + L,oS~ oUo ~- ~v~. 

i=1 

(24) 

As we make the transition from the upper to the lower level, we determine the sweeping 
coefficients in this manner at each arm of the graph. In this case, we have successive 
elimination of all boundary and inside apices of the graph, since the boundary conditions 
or conditions of thermal conjugacy given at these apices are used to calculate the boundary 
sweeping coefficients on the corresponding lower-level arms of the graph. The values of the 
sweeping coefficients on the root arm (arms) (and root in the case of a bush) of the graph 
are used to determine the thermal influence exerted by the p-th boundary graph on the root 
graph [see (ii)]: 

f ~ Z ~'I,N~ SI'NPl (Al,Nf~l,Nf--lCl'NPll) + Z (AI'Nf[~I'NI~I -[- F I'N~ )=~at)" 
l=l  l=1 

(25)  

If we use this expression to describe the thermal state of the corresponding apex of 
the root graph, then we can examine the algorithm for the calculation of the temperature 
fields on the root graph (see [I]). 

We will seek the solution of system (7), (8), with consideration of (25), at each arm 
of the root graph in the form: 
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. T;,~+~ = ~J,~TJ, z +  ~ * +  ?J,~T (x~) on E ~  (~ ~ GZ); (26)  

Using (26) fo r  i = 0 and (27) f o r  i = Nj - 1, i t  i s  easy  to  ob t a in  t he  fo l lowing  system fo r  
t he  d e t e r m i n a t i o n  of t he  unknown t e m p e r a t u r e  a t  t he  ap i ce s  of  the  r o o t  graph:  

T(x=) :  X A~T(x~)q--r r 1, 2, ..., N~, (28) 
l~qr 

where 

^ k 
kj. N~ (Z~) S,,~v~ (E~) A~, N~ (E~) ?i. ~9 (E~), ~ ~ G + ; 

A~  = D~ ~ i ~=1 
~,o (E2~) Sj,o ( ~ )  Bi o (c~) W,0 (E~), ~ ~ G~ ; 

( h = l  

(29) 

N + M8e 

D; 1 r E E E = , (~3o~) S],  Nj  (s X 
i=l h=l 

N-~ M~e 
A k - E a E a E a , , S j , o  x 

.i=1 k = l  

X [BAo (E~) E k ~J,o ( ~ )  + Fi,o (E~)I + 

+ Qv. + (1 - -  ?~,p) X (A',Nf ~,Ny + F~,Nf ) \/," ( 30 ) 
l = l  

N + MBc,^ 

D~ = ~ 1  V~p~ Cp~ - -  z~ ~ ~ Zj . . . .  Nj (E~.) S i Nj (E~) [Aj Nj (E~) aj,N~ (E~)h __ 
1=1 ~=1 

N~ M~ 
E h 

- t -  + 
i=1 h=l 

~q+ (31) 
h k + BAo (E~) aj,o (E~)] - -  (1 - -  W,,p) 2 ~I'NP Sl Nf (At,N~ %,Nf --  C~,~f). 

l =  1 

From the  soku t ion  of  system (28 ) - (31 )  we de te rmine  the  unknown f u n c t i o n s  of  t empe ra tu r e  
a t  the  ap ices  of  the  r o o t  graph,  wi th  c o n s i d e r a t i o n  g iven  to the  the rmal  i n f l u e n c e  of t he  
boundary graphs .  Knowing Ta, Vae  Vr, and u t i l i z i n g  (26) and (27) ,  we w i l l  c a l c u l a t e  the  
temperature distribution on all of the arms of the root graph. 

Having found T~ Dr, we subsequently examine each p-th boundary graph. The temperature 
at the apices of the root graph ae (V r ~ Vp), p = ~ Nb, with which the p-th boundary graph 
is in contact, is used to calculate the temperature fields by means of (12) on the root arms 
of each boundary graph. As a result, we determine the temperatures of the first-level apices 
of the boundary graph, since Tj,Nj = T~, where a = j. Using these values as the boundary 

conditions of the first kind, let us calculate the temperature fields at the second-level arms. 
Thus, as we make the sequential transition from the lower level to the upper level, we will 
calculate the temperature fields on each boundary graph. 

This concludes the calculation of the temperature fields in the structure under con- 
sideration, with the corresponding time interval. Let us note that the utilization of non- 
iteration solution conjugacy at the apices to calculate the temperature fields on the boun- 
dary graphs significantly reduces the number of operations and reduces the expenditure of 
computer time. 
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In conclusion, let us note that the universal solution algorithm considered here for 
problems of mathematical modeling of the thermal regime of a structure in one-dimensional 
approximation integrates both the possibilities and unique features of the solution al- 
gorithms for these problems, determined on general-form graphs and on graphs in the shape 
of a tree. The utilization of this algorithm is most expedient when the thermal model of 
the thermophysical system under consideration is formalized by a complex branched graph of 
greater dimensionality. 

NOTATION 

T, temperature; t, time, index of time; x, spatial coordinate, index Of spatial coordi- 
nate; ~, thermal conductivity; Cp, Cm, heat capacity; p, density; S, area Of the lateral 
cross section of the element; qv, QV, functions of the source in the heat-conduction equa- 
tion for a distributed element and in the heat-balance equations for a concentrated element, 
respectively; h, interval of the difference approximation along the corresponding coordi- 
nate; A, B, C, F, system coefficients of difference algebraic equations; D, region of prob- 
lem determination; F, boundary of region D; V, set of apices of the graph, volume of the con- 
centrated element; G~ = G~ + + G~-, set of arms, conjugate with the apex ~; N, number of ele- 
ments, arms, apices, levels; T, values of the function T at the instant of time k; TI, value 
of the function T at the instant of time k + i. Subscripts: ~, 6, V, apices; j, s arms; 
i, coordinate point at the j-th arm; b, p, boundary graphs; y, level of tree-shaped graph; 
in, inside apex; b, boundary apex; r, root graph; k, element of the set connecting two fixed 
apices. 

i# 
2. 
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